Unconditionally Secure Constant Round Multi-Party Computation for Equality, Comparison, Bits and Exponentiation

نویسنده

  • Eike Kiltz
چکیده

In this paper we are interested in efficient and secure constant round multi-party protocols which provide unconditional security against so called honest-but-curious adversaries. In particular, we design a novel constant round protocol that converts from shares over Zq to shares over the integers working for all shared inputs from Zq . Furthermore, we present a constant round protocol to securely evaluate a shared input on a public polynomial whose running time is linear in the degree of the polynomial. The proposed solution makes use of Chebyshev Polynomials. We show that the latter two protocols can be used to design efficient constant round protocols for the following natural problems: (i) Equality: Computing shares of the bit indicating if a shared input value equals zero or not. This provides the missing building blocks for many constant round linear algebra protocols from the work of Cramer and Damg̊ard [CD01]. (ii) Comparison: Computing shares of a bit indicating which of two shared inputs is greater. (iii) Bits: Computing shares of the binary representation of a shared input value. (iv) Exponentiation: Computing shares of x mod q given shares of x, a and q. Prior to this paper, for all the above mentioned problems, there were in general no efficient constant round protocols known providing unconditional security.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconditionally Secure Constant-Rounds Multi-party Computation for Equality, Comparison, Bits and Exponentiation

In this paper we are interested in efficient and secure constant round multi-party protocols which provide unconditional security against so called honest-but-curious adversaries. In particular, we design a novel constant round protocol that converts from shares over Zq to shares over the integers working for all shared inputs from Zq. Furthermore, we present a constant round protocol to secure...

متن کامل

Constant-Rounds, Linear Multi-party Computation for Exponentiation and Modulo Reduction with Perfect Security

Bit-decomposition is an important primitive in multi-party computation (MPC). Given a sharing of secret x, it allows the parties to compute the sharings of the bits of x in constant rounds. With the help of bit-decomposition, we will be able to construct constant-rounds protocols for various MPC problems, such as equality test, comparison, public modulo reduction and private exponentiation, whi...

متن کامل

An Efficient Pseudo-Random Generator with Applications to Public-Key Encryption and Constant-Round Multiparty Computation

We present a pseudo-random bit generator expanding a uniformly random bitstring r of length k/2, where k is the security parameter, into a pseudo-random bit-string of length 2k − log(k) using one modular exponentiation. In contrast to all previous high expansion-rate pseudo-random bit generators, no hashing is necessary. The security of the generator is proved relative to Paillier’s composite d...

متن کامل

Round Efficient Unconditionally Secure MPC and Multiparty Set Intersection with Optimal Resilience

In information theoretic model, unconditionally secure multiparty computation (UMPC) allows a set of n parties to securely compute an agreed function f , even upto t < n/2 parties are under the control of an active adversary having unbounded computing power. The bound on the resilience/fault tolerance (i.e t < n/2 ) is optimal, as long as each party is connected with every other party by a secu...

متن کامل

Practical and Secure Solutions for Integer Comparison

Yao’s classical millionaires’ problem is about securely determining whether x > y, given two input values x, y, which are held as private inputs by two parties, respectively. The output x > y becomes known to both parties. In this paper, we consider a variant of Yao’s problem in which the inputs x, y as well as the output bit x > y are encrypted. Referring to the framework of secure n-party com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005